Concurrent Programming in
Java Thread

Java Thread versus Pthread

Objective

Explain the m ultithreading paradigm, and all aspects of ho w to
use it in an application

= Cover basic MT concepts

= Review the positions of the major vendor s
= Contrast POSIX, Ul, Win32,and Ja va threads
s Explore (most) all issues related to MT

= Look at pr ogram and librar y design issues

= Look at thread-specific perf ormance issues
= Understand MP har dware design

= Examine some POSIX/Ja va code e xamples

At the end of this seminar , you should be ab le to e valuate the
appropriateness of threads toy our application, andy ou should be
able to use the documentation fr om your c hosen vendor and star t
writing MT code .

Bil Lewis 2 of 407 21 March 2000

Background

= Experimental threads ha ve been in labs f or years
= Many diff erent libraries were e xperimented with
= Currentl y there are f our major “native” MT libraries in use:
= POSIX / UNIX98
=« Ul (aka “Solaris threads”)
= 0S/2
= Win32
= (Apple with Mac h)
= POSIX ratified “Pthreads” in J une, 1995
= All major UNIX vendor s ship Pthreads

= Java Threads (whic h are usuall y built on the native threads)

Bil Lewis 6 of 407 21 March 2000

The Value of MT

Threads can:

= Simplify pr ogram structure

= Exploit parallelism

= Improve thr oughput

= Improve responsiveness

= Minimiz e system resour ce usage

= Simplify realtime applications

= Simplify signal handling

= Enable distrib uted objects

= Compile fr om a single sour ce across platf orms (POSIX, Ja va)
= Run from a single binar y for any number of CPUs

Bil Lewis 8 of 407 21 March 2000

Thread Lif e Cycle

— — T1
pthread_create(... f(), arg)
pthread_exit(status)
f(arg) T2
POSIX Win32 Java
main() main() main()
{ MyThreadt;
pthread_create(f, arg) CreateThread(f, arg)
_beginthread(f, arg) t = new MyThread();
} _Xbeginthread(f,arg) t.start();
}
void *f(void *arg) DWORM f(DWORD arg) class MyThread
extends Thread
{... {...
pthread_exit(status); ExitThread(status); public void run()
_endthread(status);
_xendthread(status); return()

}
}

Bil Lewis 46 of 407 21 March 2000

Runnab le vs. Thread

It is possib le to subc lass Thread and define a run() method f or it:

public MyThread extends Thread

{
public void run() MyThread

{do_stuff():}

MyThread t = new MyThread();
t.start();

t.start() \v

run() T2

Bil Lewis 47 of 407 21 March 2000

Runnab le vs. Thread

But it is (al ways ?) better to define a Runnable and have a stoc k
Thread run it:

public MyRunnable implements Runnable Thread

{

public void run()
{do_stuff();}

MyRun..

Thread t = new Thread(new MyRunnable());
t.start();

Logicall y speaking, we are not ¢ hanging the nature of the thread,
so we shouldn’t be subc lassing it. Plus the fact, no w we can
subc lass something more useful if we want. (No m ultiple
inheritance in Ja va.)

Bil Lewis 48 of 407 21 March 2000

Self Star ting Threads

It is also possib le to ha ve a thread star t running as soon as
construction is complete:

public MyRunnable implements Runnable

{
public MyRunnable()
{new Thread(this).start();}
public void run()
{do_stuff();}

}

But | don’t think this gainsy ou anything (y ou save one line of code)
and subc lassing g ets rather hair vy.

Don’t do this.

Bil Lewis 49 of 407 21 March 2000

Restarting a Thread

In Java, a Thread object is just an object that happenstoha ve a
pointer to the actual thread (stac k, kernel structure , etc.). Once a
thread has e xited (“stopped”), itis gone . Itis not “restar table”
(whate ver that means!).

A Runnable , on the other hand, ma y be used f or as man y threads
as you like . Just don’t put an y instance v ariables into y our
Runnable .

We like to vie w Threads as the engines f or g etting w ork done
while the Runnable is the w ork to be done .

Bil Lewis 50 of 407 21 March 2000

Waiting f or a Thread to Exit

—

pthread_join(T2) pthread_join(T3)

— T1

—

pthread_exit(status)

pthread_exit(status)

T2

T3

POSIX Win32

pthread_join(T2); WaitForSingleObject(T?2)

Java

T2.join();

There is no special relation between the creator of a thread and
the waiter . The thread ma y die bef ore or after join is called. Y ou

may join a thread onl y once.

Bil Lewis

51 of 407

21 March 2000

EXIT vs. THREAD_ EXIT

The normal C function exit() always causes the pr ocess to e xit.
That means all of the pr ocess -- All the threads.

The thread e xit functions:

POSIX: pthread_exit()

Win32: ExitThread() and endthread()

Java: thread.stop() (vs. System.exit())
Ul: thr_exit()

all cause onl y the calling thread to e xit, lea ving the pr ocess intact
and all of the other threads running. (If no other (non-daemon)
threads are running, then exit() will be called.)

Returning fr om the initial function calls the thread e xit function
implicitl y (via “falling off the end” or via return()).

Returning fr om main() calls _exit() implicitl y. (C, C++, not Java)

Bil Lewis 52 of 407 21 March 2000

stop() Is Deprecated in JDK 1.2

As called fr om the thread being stopped, it is equiv alent to the
thread e xit functions. As called fr om other threads, it is equiv alent
to POSXI async hronous cancellation. As it is pretty m uch
impossib le to use it correctl vy, stop has been pr oclaimed officiall y
undesirab le.

If you wish to ha ve the current thread e xit, y ou should ha ve it return
(or thr ow an exception) up to the run() method and e xit fr om there .
The idea is that the lo w level functions shouldn’te ven kno w if
they’re running in their o wn thread, or in a “main” thread. So the vy
should ne ver exit the thread at all.

destroy() was Never Implemented

So don’t use it.

Bil Lewis 53 of 407 21 March 2000

POSIX Thread IDs are Not Integers

They are defined to be opaque structures in all of the libraries. This
means that the y cannot be casttoa (void*) ,they can not be
compared with ==, and the y cannot be printed.

In implementations, the y CAN be....
= Solaris: typedef unsigned int pthread t

= main thread: 1; librar y threads: 2 & 3; user threads 4,
5...

= |RIX: typedef unsigned int pthread t

= main thread: 65536; user threads ...
= Digital UNIX: ?
= HP-UX: typedef struct _tid{int, int, int} pthread t
| define a print name in thread_e xtensions.c:
thread _name(pthread_self()) -> “T@123”

Bil Lewis 54 of 407 21 March 2000

Thread IDs are Not Integers

Good Programmer Bad Programmer

if (pthread_equal(tl, t2)) ... if (t1 ==1t2) ...

int foo(pthread_t tid) int foo(void *arg)

{...} {..}

foo(pthread_self()); foo((void *) pthread_self());

pthread_t tid = pthread_self();

printf(“%s”, thread_name(tid)); printf(“t@%d”, tid);

#define THREAD_RWLOCK_INITIALZER \
??! {PTHREAD_MUTEX_INITIALIZER, \
NULL_TID}

Bil Lewis 55 of 407 21 March 2000

Java Thread Names

A Java Thread is an Object , hence it has a toString() method
whic h provides an identifiab le, printab le name for it.

You may give a thread y our o wn name if y ou so wish:
Thread t1 = new Thread(“Your Thread”);
Thread t2 = new Thread(MyRunnable, “My Thread”);

System.out.printin(t2 + “ is running.”);
==> Thread[My Thread,5,] is running.
System.out.printin(t2.getName() + “ is running.”);

==> My Thread is running.

Bil Lewis 56 of 407 21 March 2000

sched_vyield()
hread.yield()

= Will relinquish the L WP (or CPU for bound threads) to an yone
who wants it (at the same priority le vel, both bound and
unbound).

» Must NOT be used f or correctness!

= Probably not useful f or anything b ut the od dest pr ograms (and
then onl y for “efficienc y” or “fairness”.

= The JVM on some platf orms (e .g., Solaris with Green threads)
may require it under some cir cumstances, suc h as
computationall y bound threads.) This will c hange.

= Never Wrong, b ut...

Avoid sched _yi el d() Thread. yi el d() !

Bil Lewis 63 of 407 21 March 2000

Daamon Threads

A deemon is a normal thread in e very respect sa ve one: Daemons
are not counted when deciding to e xit. Once the last non-deemon
thread has e xited, the entire application e xits, taking the deemons
with it.

Daemon Threads e xist onl y in Ul, and Ja va threads.
UlI:

thr_create(..., THR_DAEMON,...);

Java:

void thread.setDaemon(boolean on);

boolean thread.isDaemon();

Avoid using Deemons!

Bil Lewis 64 of 407 21 March 2000

Synchronization

Bil Lewis 77 of 407 21 March 2000

Critical Sections
(Good Pr ogrammer)

- -
Wait!
et g
| sharedvaa S
unlock(M); . unlock(M);
O -

(Of cour se you must kno w whic h lock protects whic h data!)

Bil Lewis 82 of 407 21 March 2000

Sync hronization V ariab les

Each of the libraries implement a set of “sync hronization

variab les” whic h allo w diff erent threads to coor dinate activities.
The actual v ariables are just normal structures in normal memor y*.
The functions that operate on them ha ve a little bit of ma gic to
them.

Ul: Mutexes, Counting Semaphores, Reader/Writer Loc ks,
Condition V ariables, and Join.

POSIX: Mute xes, Counting Semaphores, Condition V ariables,

and Join.
Java: Sync hroniz ed, Wait/Notify , and Join.
Win32: Mutexes, Event Semaphores, Counting Semaphores,

“Critical Sections. ” and Join (W aitForObject).

*In an early mac hine, SGI actuall y built a special memor vy area.

Bil Lewis 85 of 407 21 March 2000

Mutexes

Sleepers > T3 @1—>» T2 @
T1 T2 T3 g ¢
Prio:0 Prio:1 Prio: 2
POSIX Win32 Java
pthread mutex_lock(&m) WaitForSingleObject(m) synchronized(obj)
pthread_mutex_unlock(&m) ReleaseMutex(m) }

= POSIX and Ul: Owner not recor ded, Bloc k in priority or der,
lllegal unloc k not c hecked at runtime .

» WIin32: Owner recor ded, Bloc k in FIFO or der

= Java: Owner recor ded (not a vailable), No defined b locking
order, lllegal Unloc k impossib le

Bil Lewis 86 of 407 21 March 2000

Java LocKking

The class Object (and thus e verything that subc lasses it -- e .g.,

everything e xcept f or the primitive types: int, ¢ har, etc.) have a
hidden mutex and a hid den “wait set”:

Type: Object int
FFFF FFFF FFFF FFFF
Held? 1
mutex_
Sleepers | @+ 13| @+—»{T2| @
Wait_Set_ Sleepers | @1 T4| @

Bil Lewis 87 of 407 21 March 2000

Java LocKking

The hid den mutex is manipulated b y use of the synchronized
keyword:

public MyClass() {
int count=0;

public synchronized void increment()
{count++;}

or explicitl y using the object:

public MyClass() {
int count=0;

public void increment() {
synchronized (this)
{count++;}

Thus in Ja va, you don’t ha ve to w orry about unloc king. That’ s done
for you! Even if the thread thr ows an e xception or e xits.

Bil Lewis 88 of 407 21 March 2000

Each Instance Has Its Own Loc k

Thus eac h instance has its 0 wn loc k and wait set whic h can be
used to pr otect.... an ything y ou want to pr otect! (Normall y you’ll be
protecting data in the current object.) Class Objects are Objects...

Bil Lewis

mutex_

wait_set_

InstanceOf Foo: f o001l

Held?

1

Sleepers

‘_

13 @112 @]

Sleepers

[T @

InstanceOf Foo: f 002

mutex_

wait_set_

Held?

1

Sleepers

‘_

75| @1—{T6| @ |

Sleepers

7] ®

mutex_

wait_set_

Class Object: Foo

Held? 1

Sleepers ‘--»' T0| .—|—>|T8| .l

Sleepers| @ n

89 of 407

21 March 2000

Using Mute xes

------__ remove(); -> Request3

—

Request?2 |@+»|Requestl |@

requests @—»|Request3 |@-
/ -
Ve

\ y»|Requestd | @

add(Request4);

Thread 1

add(request_t *request)

{ pthread_mutex_lock(&req_lock);
request->next = requests;
requests = request;
pthread mutex_unlock(&req_lock)

}

Thread 2

request_t *remove()
{ pthread_mutex_lock(&req_lock);
sl eepi ng...

request = requests;

requests = requests->next;
pthread_mutex_unlock(&req_lock);
return(request);

Bil Lewis

90 of 407 21 March 2000

Using Ja va Locking

requests _------__ remove(); -> Request3
, RN
@ | Request3 |@-»|Request2 |@-+1»|Requestl |@
;L v
{/ T T T Tl . add(Request4);
\ Y

\ y»|Requestd | @

Thread 1 Thread 2

add(Request request) {
synchronized(requests)

{request.next = requests; Request remove() {
requests = request; synchronized(requests)
} ... Sl eeping...

}
{request = requests;
requests = requests.next;

return(request);

Bil Lewis 91 of 407 21 March 2000

Generaliz ed Condition V ariable

loc k ‘ ‘ loc k ‘
* | cond=TR UE |

cond) <-— +
? | unloc k |

Y
| wakeup |

\J (usr;(laoecpk) _==" 4 ‘

. (lock) | <*-~ .
contin ue contin ue

unloc k

Win32 has “EventObjects”, whic h are similar .

Bil Lewis 110 of 407 21 March 2000

Condition V ariable Code

Thread 1 Thread 2

pthread_mutex_lock(&m);
while (Imy_condition)
pthread cond_wait(&c, &m);

pthread_mutex_lock(&m);
my_condition = TRUE;
pthread _mutex_unlock(&m);
pthread_cond_signal(&c);
I* pthread_cond_broadcast(&c); */
do_thing();
pthread_mutex_unlock(&m);

Bil Lewis 111 of 407 21 March 2000

Java wait()/notify() Code

Thread 1 Thread 2

synchronized (object)
{while (object.my_condition)
object.wait();

synchronized (object);
{object.my_condition = true;
object.notify();
I/l object.notifyAll();
}
do_thing();
}

(Explicit use of sync hronization)

Bil Lewis 112 of 407

21 March 2000

Java wait()/notify() Code

Thread 1 Thread 2

public synchronized void foo()
{while (Imy_condition)

wait();

public synchronized void bar()

{
my_condition = true;
notify();

¥ notifyAll(); */

}

do_thing();

}

(Implicit use of sync hronization)

You can actuall y combine the e xplicit and implicit uses of
sync hronization in the same code

Bil Lewis 113 of 407

21 March 2000

Nested Loc ks Are Not Released

If you alread y own a loc k when y ou enter a critical section whic h
you’ll be calling pthread cond_wait() or Javawait() from, you
are responsib le for dealing with those loc ks:

public synchr oni zed void foo()

{

synchronized(that)
{while ('that.test()) that.wait();}

pt hread nut ex | ock(& ockl);
pthread _mutex_lock(&lock2);
while ('test()) pthread_cond_wait(&cv, &lock?2);

Bil Lewis 114 of 407 21 March 2000

Java Exceptions f or wait() , etc.

A variety of Ja va threads methods thr ow InterruptedException
In particular: join() ,wait() ,sleep() . The intention is all
bloc king functions will thr ow InterruptedlOEXxception

This e xception is thr own by our thread when another thread calls
interrupt() on it. The idea is that these methods should be ab le
to be forced to return should something e xternal aff ect their

usefulness.

As of Java 1.1, thread.interrupt() was not implemented.
Anyway, all of our code m ust catc h that e xception:

try 1
while (true) {
item = server.get();
synchronized (workpile) {
workpile.add(item);
workpile.wait();

catch (InterruptedException ie) {}

Bil Lewis 115 of 407 21 March 2000

Inser ting Items Onto a List (Ja

public class Consumer implements Runnable {
public void run() {
try {
while (true) {
synchronized (workpile) {
while (workpile.empty()) workpile.wait();
request = workpile.remove();

}
server.process(request);
3}
catch (InterruptedException e) {} // Ignore for now

}

public class Producer implements Runnable {
public void run() {
while (true) {
request = server.get();
synchronized (workpile) {
workpile.add(request);
workpile.notify();

)
}

Bil Lewis 121 of 407

va)

21 March 2000

Implementing Semaphores in Ja va

public class Semaphore
{int count = 0;

public Semaphore(int i)
{count =i;}

public Semaphore()
{count = 0;}

public synchronized void init(int i)
{count =i;}

public synchronized void semWait()
{while (count == 0)
{try
wait();
catch (InterruptedException e) {}

}

count--;

}

public synchronized void semPost()

{

count++;
notify();
}

Bil Lewis 122 of 407

21 March 2000

Sync hronization V ariab le Prototypes

pthread_mutex_t
error pthread_mutex_init(&mutex, &attribute);

error pthread_mutex_destroy(&mutex);
error pthread_mutex_lock(&mutex);
error pthread_mutex_unlock(&mutex);

error pthread_mutex_trylock(&mutex);

pthread_cond_t

error pthread_cond_init(&cv, &attribute);

error pthread_cond_destroy(&cv);

error pthread_cond_wait(&cv, &mutex);

error pthread_cond_timedwait(&cv, &mutex, ×truct);
error pthread_cond_signal(&cv);

error pthread_cond_broadcast(&cv);

sem_t
error sem_init(&semaphore, sharedp, initial_value);

error sem_destroy(&semaphore);
error sem_wait(&semaphore);

error sem_post(&semaphore);
error sem_trywait(&semaphore);

thread rwlock t

error thread_rwlock_init(&rwlock, &attribute);
error thread_rwlock_destroy(&rwlock);

error thread_rw_rdlock(&rwlock);
error thread_rw_tryrdlock(&rwlock);
error thread_rw_wrlock(&rwlock);
error thread_rw_trywrlock(&rwlock);
error thread_rw_unlock(&rwlock);

Bil Lewis 128 of 407

21 March 2000

Java Sync hronization Pr ototypes

synchronized void foo() {...}

synchronized (object) {...}

synchronized void foo() {... wait(); ...}
synchronized void foo() {... notify[All](); ...}
synchronized (object) {... object.wait(); ...}
synchronized (object) {... object.notify[All](); ...}

From Bil's Extensions package
public void mutex.lock();
public void mutex.unlock();

public void mutex.trylock();

public void cond_wait(mutex);

public void cond_timedwait(mutex, long milliseconds);
public void cond_signal();

public void cond_broadcast();

public void sem_init(initial_value);
public void sem_wait();

public void sem_post();

public void sem_trywait();

public void rw_rdlock();
public void rw_tryrdlock();
public void rw_wrlock();
public void rw_trywrlock();
public void rw_unlock();

Bil Lewis 129 of 407 21 March 2000

Synchronization

Problems

Bil Lewis 152 of 407 21 March 2000

lock(M1)

lock(M2)

——

T1

Mutex M1

Held? 1

Sleepers | @

Deadloc ks

T2

lock(M2)

lock(M1)

T2

Mutex M2

Held? 1

Unloc k order of m utexes cannot cause a deadloc k

Bil Lewis

153 of 407

Sleepers | @1

T1

21 March 2000

Java Deadloc ks

sync hroniz ed(M1) sync hroniz ed(M2)
sync hroniz ed(M2) . sync hroniz ed(M1) <
T1 T2
Object M1 Object M2
Held? 1 Held? 1
Sleepers | @—+>{T2| @ Sleepers | @+ T1| @

Bil Lewis 154 of 407 21 March 2000

InterruptedException

Like cancellation, InterruptedException is difficult to handle
correctl y. You may wish to handle it locall :
void foo()
{
try {wait();}
catch (InterruptedException e) {do_something}
}

or, more likel y, you may wish to simpl y propogate it up the call
stack to a higher le vel. (Very likel y to the ver y top!)

void foo() throws InterruptedException

{
try {wait();}
}

Bil Lewis 205 of 407 21 March 2000

InterruptedException

In any case, it is impor tant not to dr op an interruption. Y our code
may be used b y some other pac kage someday...

Bad Programmer:

void foo() {
try {wait();}
catch (InterruptedException e) {}

}

Good Programmer:

void foo() {
while (true) {
try {wait(); return;}
catch (InterruptedException e) {intd=true}

}
if (intd) Thread.currentThread().interrupt();

}

Bil Lewis 206 of 407 21 March 2000

Foundations

Bil Lewis 11 of 407 21 March 2000

DOS - The Minimal OS

Stack & Stack Pointer

Program Counter

User
Code
User Global
Kernel DOS
Space DOS
Code
DOS
Data
Bil Lewis 12 of 407 21 March 2000

Bil Lewis

Process —

User

Space

Multitasking OSs

aﬂﬂ

[]

Kernel
Space

Process Structure

[1]

The Kernel

(UNIX, VMS, MVS, NT, OS/2, etc.)

13 of 407

21 March 2000

Bil Lewis

Multitasking OSs

Processes
P1 P2 P3 P4
— — — —
The Kernel

(Each process is completel y independent)

14 of 407

21 March 2000

Multithreaded Pr ocess

T3'sPC T1's PC T2's PC

T1's SP
T3's SP \ \ /
\ >

/
T2's SP N4>|:| B e
N] Global
4>|:| 4>|:|] Data

Process Structure

User
Code

The Kernel

(Kernel state and ad dress space are shared)

Bil Lewis 15 of 407 21 March 2000

Thread
Structures

LWPs

Solaris Implementation

of Pthreads

g g _,g - Threads
(JVM)

N User

Code

Threads Library | | Global

(POSIX/Win32/Green) Data

V2NV -

NN

Process Structure

The Kernel

libpthread.so

IS Just a normal, user librar !

Java threads are par t of the Ja vaVM and similar .

Bil Lewis

19 of 407

21 March 2000

How System Calls W ork

User Space
Stack

Kernel Space
Stack

Bil Lewis 20 of 407 21 March 2000

Scheduling

Bil Lewis 26 of 407 21 March 2000

Kernel Structures

Traditional UNIX Pr ocess Structure

Process ID

UID GID EUID EGID CWD...

Signal Dispatc h Table

Memory Map

Priority

Signal Mask

Register s

File Descriptor s Kernel Stac k

CPU State

Bil Lewis

Solaris 2 Pr ocess Structure
Process ID

UID GID EUID EGID CWD...

Signal Dispatc h Table

Memory Map

@

File Descriptor s

LWP 2 LWP 1 ‘/
-«

LWP ID LWP ID
Priority Priority
Signal Mask Signal Mask
Register s Register s
Kernel Stac k Kernel Stac k
27 of 407 21 March 2000

Light W eight Pr ocesses

= Virtual CPU
= Scheduled b y Kernel

= Independent System Calls, P age Faults, K ernel Statistics,
Scheduling Classes

= Can run in P arallel

= LWPs are an Implementation T echnigque
(i.e., think about concurrenc y, not LWPS)

s LWP is a Solaris term, other vendor s have diff erent names f or
the same concept:

s DEC: Lightweight threads vs. hea vyweight threads

= Kernel threads vs. user threads (also see “kernel
threads” belo w)

(SUNOS 4.1 had a librar y called the “LL WP” librar y. No relation to Solaris L WPs)

Bil Lewis 28 of 407 21 March 2000

Scheduling
Design Options

M:1 1:1 M:M (strict)
HP-UX 10.20 Win32, OS/2, AIX 4.0
(via DCE)

Green Threads

2-Level (aka: M:M)
Solaris, DEC, IRIX, HP-UX 10.30, AIX 4.1

|
Bil Lewis 29 of 407 21 March 2000

Solaris T wo-Level Model

Traditional
Process
Proc 1 400 2 Proc 3 Proc 4 Proc 5
wser | 3] | A [T A A A
Space \/f
_J Q_Q ~
‘ i ‘ ‘ ‘ LWPs
2 SR 2 S S \
Kernel Kernel
Space Threads
=

Hardware Processor s

“K ernel thread” here means the threads that the OSis b uilt with.
On HP, etc. it means L WP.

Bil Lewis 30 of 407 21 March 2000

Time Sliced Sc heduling
VS.
Strict Priority Sc heduling

— s m m s _—T1>CPU
~ e s s s s [T2

Typical Time Sliced Sc heduling

Typical Strict Priority Sc heduling

- 1 |

Working Sleeping Request Reply

Bil Lewis 31 of 407 21 March 2000

System Scope “Global” Sc heduling
VS.
Process Scope “Local” Sc heduling

= Global means that the kernel is sc heduling threads
(aka “bound threads”, 1:1, System Scope)

= Requires significant o verhead
= Allows time slicing
= Allows real-time sc heduling

= Local means the librar y is sc heduling threads
(aka “unbound threads”, M:M, Pr ocess Scope)

= Very fast

= Strict priority onl vy, no time slicing
(time slicing is done on Digital UNIX, not Solaris)

Bil Lewis 33 of 407 21 March 2000

Local Sc heduling States

_é _é Suspended

g g Runnab le (Ul, Java, and UNIX98)

g g —é Active SV1 _.g

Sleeping

SV2 (
¢

NN

Runnab le ' ' CPUs

Active

(Ul, Java, and POSIX onl y)

Bil Lewis 34 of 407 21 March 2000

Global Sc heduling States

'g g _’ Sv1 —’g
£
Suspended Sleeping
(Ul, Java, Win32, UNIX98)
Runnab le '} CPUs
Active

(Ul, Java, POSIX, Win32)

Bil Lewis 35 of 407 21 March 2000

Scheduler P erformance

Creation Primitives

Conte xt Switc hing

POSIX Java 2
uSecs uSecs
Local Thread 330 2,600
Global Thread 720 n/a
Fork 45,000
POSIX Java 2
uSecs uSecs
Local Thread 90 125
Global Thread 40 n/a
Fork 50

110MHz SPARCstation 4 (This mac hine has a SPECint of about 20%
of the fastest w orkstations toda y.) running Solaris 2.5.1.

Bil Lewis

36 of 407 21 March 2000

Scheduling States

Stop

RUNNABLE

Dispatc h

Contin ue

STOPPED
(Suspended)

-

Contin ue

“Stopped” (aka “Suspended”) isonl yin Win32, Ja va, and Ul
threads, not POSIX. No relation to the ja va method thread.stop()

Bil Lewis 37 of 407 21 March 2000

NT Scheduling

SLEEPING RUNNABLE
Real Time Class ‘_
— | T1
7 | @
High Priority Class
e -~ = | @
i
Normal Class :
Idle Class
® - = O

Normal K ernel Sc heduler

All Round Robin (timeslicing)

Bil Lewis

39 of 407

T4

CPU1

CPU2

21 March 2000

Solaris Sc heduling

SLEEPING RUNNABLE
Interrupts
Int T T
iy 18
Real Time Class ‘_ CPU1
> | T1 | oo .
7 |~ @
System Class
® - = @ > T4
i
Timesharing Class :
---------------------------- CPU2
® - = O

Normal Solaris K ernel Sc heduler (60 priority le vels in eac h class)

RT and system c lasses do RR, TS does demotion/pr omaotion.

Bil Lewis 40 of 407 21 March 2000

POSIX Priorities

For realtime threads, POSIX requires that at least 32 le vels be
provided and that the highest priority threads al ways g et the CPUs
(as per pre vious slides).

For non-realtime threads, the meaning of the priority le vels is not
well-defined and left to the discretion of the individual vendor . On
Solaris with bound threads, the priority n umber s are ignored.

You will pr obably never use priorities.

Bil Lewis 42 of 407 21 March 2000

Java Priorities

The Java spec requires that 10 le vels be pr ovided, the actual v alues
being integ ers between Thread.MIN_PRIORITY and
Thread.MAX_PRIORITY . The default le vel for a new thread is
Thread.NORM_PRIORITY.

Threads may examine or ¢ hang e their o wn or other s’ priority le vel
with thread.getPriority() and thread.setPriority(int)

Obviousl y, int has to be with in the rang e Thread.MIN_ PRIORITY ,
Thread.MAX_PRIORITY. It may be fur ther restricted b y the
thread’ s group via threadGroup.getMaxPriority() and
threadGroup.setMaxPriority(int).

On Solaris these are mapped to 1, 10, and 5, although this is not
required. These n umber s are not pr opagated do wn to the L WPs
and are theref or meaningless when there are enough L WPs. For
Green threads, the priority le vels are absolute .

You will pr obably never use priorities.

Bil Lewis 43 of 407 21 March 2000

	temp.pdf
	Concurrent Programming in Java Thread

	temp.pdf
	Concurrent Programming in Java Thread

